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Sparsification
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Graph Sparsifiers
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Spanners

4

G H
Preserve approximate shortest path distances [Chew’86]



Undirected Cut Sparsifiers
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G H
All vertex cuts have approximately equal weights in 𝐺 and 𝐻
[Benczur-Karger ‘92] There are undirected cut sparsifiers with 𝑛 log 𝑛 edges



Directed Cut Sparsifiers?

Complete bipartite graph

The only outgoing edge is 𝑎 → 𝑏

Every edge must be preserved for 
a multiplicative cut approximation

No sparsification possible
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Eulerian (Directed) Graphs

Eulerian iff weighted in-degree = weighted out-degree

Avoids pathological issues

Observed advantage for flow problems [Ene-Miller-Pachocki-Sidford’16]
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Spectral Characterization
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Undirected Laplacians

A weighted, undirected graph 𝐺 = 𝑉, 𝐸,𝑤

𝑛 = 𝑉 	, 𝑚 = 𝐸 , 𝑤: 𝐸 → ℝ!

Laplacian of edge 𝑢𝑣	is the symmetric 𝑛×𝑛 matrix, 

𝐿"# =
1 ⋯ −1
⋮ ⋱ ⋮
−1 ⋯ 1

	 	 	 		
	 	 	 		= 𝜒" − 𝜒# 𝜒" − 𝜒# $

𝑢 𝑣
𝑢

𝑣



Undirected Laplacians

A weighted, undirected graph 𝐺 = 𝑉, 𝐸,𝑤

𝑛 = 𝑉 	, 𝑚 = 𝐸 , 𝑤: 𝐸 → ℝ!

Laplacian of 𝐺 is

𝐿 = =
",# ∈'

𝑤"#𝐿"#

	 = =
",# ∈'

𝑤"# 𝜒" − 𝜒# 𝜒" − 𝜒# $	



Directed Laplacians

A weighted, directed graph 𝐺 = 𝑉, 𝐸,𝑤

𝑛 = 𝑉 	, 𝑚 = 𝐸 , 𝑤: 𝐸 → ℝ!

Laplacian of edge 𝑢 → 𝑣	is the asymmetric 𝑛×𝑛 matrix, 

𝐿"→# =
1 ⋯ 0
⋮ ⋱ ⋮
−1 ⋯ 0

	 	 	 		
	 	 	 		 = 𝜒" − 𝜒# 𝜒"$

𝑢 𝑣
𝑢

𝑣



Directed Laplacians

A weighted, directed graph 𝐺 = 𝑉, 𝐸,𝑤

𝑛 = 𝑉 	, 𝑚 = 𝐸 , 𝑤: 𝐸 → ℝ!

Laplacian of �⃗� is

𝐿) = =
"→#∈'

𝑤"#𝐿"→#

	 = =
"→#∈'

𝑤"# 𝜒" − 𝜒# 𝜒"$	



Undirected Laplacian

Symmetric

𝑥$𝐿𝑥 = =
",# ∈'

𝑤"# 𝑥" − 𝑥# *

𝑥 = 1+ gives cut value

𝐿1 = 𝐿$1 = 0

Directed Laplacian

(mostly) asymmetric

𝑥$𝐿𝑥 = =
"→#∈'

𝑤"# 𝑥" − 𝑥# 𝑥"

𝑥 = 1+ gives directed cut value

𝐿$1 = 0
14

𝐿 = #
!,# ∈%

𝑤!#
1 ⋯ −1
⋮ ⋱ ⋮
−1 ⋯ 1

𝑢 𝑣
𝑢

𝑣
𝐿 = #

!→#∈%⃗

𝑤!#
1 ⋯ 0
⋮ ⋱ ⋮
−1 ⋯ 0

𝑢 𝑣
𝑢

𝑣



Undirected Spectral Sparsifiers [Spielman-Teng‘04]

Suppose 𝐺,𝐻 are graphs on the same vertex set.
Say 𝐿) ≈, 𝐿-

 ∀𝑥	 𝑥$𝐿-𝑥 − 𝑥$𝐿)𝑥 ≤ 𝜀 ⋅ 𝑥$𝐿)𝑥

Picking 𝑥 = 𝟏𝑺, 

𝑤- 𝐸 𝑆, 𝑆/ = (1 ± 𝜀)𝑤)(𝐸 𝑆, 𝑆/ )

Generalizes cut-sparsification
15



Undirected Spectral Sparsifiers [Spielman-Teng‘04]

Suppose 𝐺,𝐻 are graphs on the same vertex set.
Say 𝐿) ≈, 𝐿-

 ∀𝑥	 𝑥$𝐿-𝑥 − 𝑥$𝐿)𝑥 ≤ 𝜀 ⋅ 𝑥$𝐿)𝑥
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[Spielman-Srivastava ‘08]
For every graph G, we can find a re-weighted subgraph H with 
𝑂 𝑛𝜀0* log 𝑛  edges such that 𝐿) ≈, 𝐿-



Directed Spectral Sparsifiers

Quadratic form can be negative
Multiplicative approximations not meaningful

Define it only for Eulerian graphs 

𝑥$𝐿𝑥 =
1
2𝑥

$(𝐿 + 𝐿$)𝑥

Observation: 1
*
(𝐿 + 𝐿$) is the Laplacian of the undirected symmetrized 

graph
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Directed Eulerian (Spectral) Sparsifiers

[Cohen-Kelner-Peebles-Peng-Rao-Sidford-Vladu’17]

𝑈 = 1
*
(𝐿 + 𝐿$) is the Laplacian of the undirected symmetrized graph

∀𝑥, 𝑦	 𝑥$𝐿-𝑦 − 𝑥$𝐿)𝑦 ≤ 𝜀 ⋅ 𝑥$𝑈)𝑥 ⋅ 𝑦$𝑈)𝑦

Generalizes undirected spectral sparsification

For an Eulerian graph,  𝐿1 = 𝐿$1 = 0
Sparsifier of Eulerian directed graph must be Eulerian
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Applications

[Cohen-Kelner-Peebles-Peng-Rao-Sidford-Vladu’17]

Fast algorithms for Eulerian sparsification give fast algorithms for:
- Solving directed Laplacian systems 𝐿)𝑥 = 𝑏 (not necc Eulerian)
- Computing stationary distributions of Markov chains
- Computing commute times 
- Personalized page rank vectors
- Top eigenvector (Perron–Frobenius vector) for positive matrices

[Ahmadinejad-Jambulapati-Saberi-Sidford’21]
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Approaches to Eulerian 
Sparsifiers
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How to build Eulerian sparsifiers v1

[Cohen-Kelner-Peebles-Peng-Rao-Sidford-Vladu’17]

Sample edges independently in expanders

Fix degree imbalance by adding extra edges

𝑛 log2 𝑛 edge sparsifier in 𝑚 log2 𝑛 for large C
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How to build Eulerian sparsifiers v2 

Short cycle decompositions [Chu-Gao-Peng-S-Sawlani-Wang’18] 

Toggle cycles independently, keep edges in one direction with double 
weight 
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Any unit-weighted graph can be partitioned into edge-disjoint cycles of 
length at most 2 log 𝑛, with 2𝑛 leftover edges.



Previous Best Guarantees
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Previous Best Guarantees
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Approach Sparsity Runtime



Previous Best Guarantees
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Approach Sparsity Runtime

Expander decompositions
[Cohen-Kelner-Peebles-Peng-Rao-Sidford-Vladu’17,
Ahmedinajad-Peebles-Pyne-Sidford-Vadhan‘23]

𝑛 log!" 𝑛 𝑚 log# 𝑛 



Previous Best Guarantees
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Approach Sparsity Runtime

Expander decompositions
[Cohen-Kelner-Peebles-Peng-Rao-Sidford-Vladu’17,
Ahmedinajad-Peebles-Pyne-Sidford-Vadhan‘23]

𝑛 log!" 𝑛 𝑚 log# 𝑛 

Short cycle decomposition
[Chu-Gao-Peng-S-Sawlani-Wang’18, 
Liu-S-Yu’19, Parter-Yogev ’19, Thudi-S-Zhao‘24]

𝑛 log$ 𝑛 𝑚%&'  



Previous Best Guarantees
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Approach Sparsity Runtime

Expander decompositions
[Cohen-Kelner-Peebles-Peng-Rao-Sidford-Vladu’17,
Ahmedinajad-Peebles-Pyne-Sidford-Vadhan‘23]

𝑛 log!" 𝑛 𝑚 log# 𝑛 

Short cycle decomposition
[Chu-Gao-Peng-S-Sawlani-Wang’18, 
Liu-S-Yu’19, Parter-Yogev ’19, Thudi-S-Zhao‘24]

𝑛 log$ 𝑛 𝑚%&'  

Electrical flows + effective resistance decomposition
[Jambulapati-S-Sidford-Tian-Zhao’24]

𝑛 log! 𝑛 𝑚 log$ 𝑛 



Building Undirected Sparsifiers
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Edge Leverage Scores

Undirected graph G,
Define effective resistance of an edge 𝑒

𝑟3 = 𝜒" − 𝜒# $𝐿01 𝜒" − 𝜒#

Define leverage score of 𝑒 as 𝑤3𝑟3

Observe: ∑3𝑤3𝑟3 = 𝑇𝑟 𝐿01∑3𝑤3𝐿3 ≤ 𝑛

29

= 𝑇𝑟 𝐿3𝐿01 	

s

t



Constructing Undirected Sparsifiers

Pick edges with leverage score 𝑤3𝑟3 ≤ 2𝑛/𝑚

Toss independent coins for edges

Tails:      Discard the edge, or,
Heads:   Keep the edge and double the weight

Repeat for log 𝑛 iterations

30



Scalar Azuma’s Inequality

31

Consider values 𝑋4 ∈ 𝑅 s.t

=
4

𝑋4* ≤ 𝜎*

Then, for random 𝑠4~± 1, 

=
4

𝑠4𝑋4 ≤ 𝜎 log𝑚

with high prob.



Scalar Azuma’s Inequality
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Consider values 𝑋4 ∈ 𝑅 s.t

𝑉𝑎𝑟 =
4

𝑠4𝑋4 ≤ 𝜎*

Then, for random 𝑠4~± 1, 

=
4

𝑠4𝑋4 ≤ 𝜎 log𝑚

with high prob.



Matrix Azuma’s Inequality
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[Lust-Piquard & Pisier’91, Tropp ‘11]
Consider matrices 𝑋4 ∈ 𝑅5×5 s.t

max =
4

𝑋4𝑋4$ , =
4

𝑋4$𝑋4 ≤ 𝜎*

Then, for random 𝑠4~± 1, 

=
4

𝑠4𝑋4 ≤ 𝜎 log𝑚

with high prob.



Matrix Azuma’s Inequality

34

[Lust-Piquard & Pisier’91, Tropp ‘11]
Consider matrices 𝑋4 ∈ 𝑅5×5 s.t

𝑉𝑎𝑟 =
4

𝑠4𝑋4 ≤ 𝜎*

Then, for random 𝑠4~± 1, 

=
4

𝑠4𝑋4 ≤ 𝜎 log𝑚

with high prob.



Constructing Undirected Sparsifiers

Want to prove 
−𝛿 ⋅ 𝑥$𝐿)𝑥 ≤ 𝑥$𝐿-𝑥 − 𝑥$𝐿)𝑥 ≤ 𝛿 ⋅ 𝑥$𝐿)𝑥
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Constructing Undirected Sparsifiers

Want to prove 
𝐿)
0 71 *(𝐿- − 𝐿))𝐿)

0 71 * ≤ 𝛿

36



Constructing Undirected Sparsifiers

Want to prove 

=
3

Δ𝑤3𝐿)
0 71 *𝐿3𝐿)

0 71 * ≤ 𝛿

Suffices 

=
3

𝑤3*𝐿)
0 71 *𝐿3𝐿)01𝐿3𝐿)

0 71 * ≤
𝛿*

log 𝑛
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Constructing Undirected Sparsifiers

Want to prove 

=
3

Δ𝑤3𝐿)
0 71 *𝐿3𝐿)

0 71 * ≤ 𝛿

Suffices 

=
3

𝑤3*𝐿)
0 71 *𝜒3𝜒3$𝐿)01𝜒3𝜒3$𝐿)

0 71 * ≤
𝛿*

log 𝑛
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Constructing Undirected Sparsifiers

Want to prove 

=
3

Δ𝑤3𝐿)
0 71 *𝐿3𝐿)

0 71 * ≤ 𝛿

Suffices 

=
3

𝑤3*𝑟3𝐿)
0 71 *𝐿3𝐿)

0 71 * ≤
𝛿*

log 𝑛
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Constructing Undirected Sparsifiers

Want to prove 

=
3

Δ𝑤3𝐿)
0 71 *𝐿3𝐿)

0 71 * ≤ 𝛿

Suffices 

max
3
𝑤3𝑟3 ⋅ =

3

𝑤3𝐿)
0 71 *𝐿3𝐿)

0 71 * ≤
𝛿*

log 𝑛
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Constructing Undirected Sparsifiers

Want to prove 

=
3

Δ𝑤3𝐿)
0 71 *𝐿3𝐿)

0 71 * ≤ 𝛿

Suffices 

max
3
𝑤3𝑟3 ≤

𝛿*

log 𝑛
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Constructing Undirected Sparsifiers

Want to prove 

=
3

Δ𝑤3𝐿)
0 71 *𝐿3𝐿)

0 71 * ≤ 𝛿

Suffices 
2𝑛
𝑚 ≤

𝛿*

log 𝑛

42



Constructing Undirected Sparsifiers

We obtain graph 𝐻 such that 𝐿- ≈8 𝐿) for 𝛿 = 5 9:; 5
<

Total error on iterating
𝑛 log 𝑛
𝑚 +

𝑛 log 𝑛
3𝑚/4 +⋯

Stop when last term is 𝜀, for total error O(𝜀)
Giving final edge count 𝑚= = 𝑛𝜀0* log 𝑛

43

QED



Building Eulerian Sparsifiers

44



Constructing Eulerian Sparsifiers?

Obstacle:
Pick random signing 𝑠3 ∼ ±1,  Δ𝑤3 = 𝑠3𝑤3 need not preserve 
Eulerianness

Previous solutions:
Only toggle directed cycles => Expensive to find short cycles
Add extra edges => Challenging to keep error small

45



Constructing Eulerian Sparsifiers?

Obstacle:
Pick random signing 𝑠3 ∼ ±1,  Δ𝑤3 = 𝑠3𝑤3 need not preserve 
Eulerianness

Our solution:
Pick random signing 𝑠3 ∼ ±1 and linearly project 𝑠	to ensure Eulerian-
ness

Equivalent to fixing degree balance 
by using electrical flows to route excess 46

s

P(s)



Constructing Eulerian Sparsifiers?

Pick random signing 𝑠3 ∼ ±1 and linearly project 𝑠	to ensure 
Eulerianness

Challenge 1: What happens to the variance?
Key Observation:

𝑉𝑎𝑟 =
3

𝑃 s 3𝑤3𝑋3 ≤ 𝑉𝑎𝑟 =
3

𝑠3𝑤3𝑋3

47



Constructing Eulerian Sparsifiers?

Pick random signing 𝑠3 ∼ ±1 and linearly project 𝑠	to ensure 
Eulerianness

Challenge 2:
max
3
	𝑃 𝑠 3	~ log𝑚

Scale down 𝑠3 = ± 1
9:;<

48



Constructing Eulerian Sparsifiers?

Pick random signing 𝑠3 = ± 1
9:;<

	and linearly project 𝑠	to ensure 
Eulerianness

Challenge 3: The sparsity is not reducing!

Key Lemma: Repeating this ~ log𝑛 times leads to Ω(𝑚) coordinates 
close to 0

Potential argument: show that ∑3 log𝑤3=/𝑤3 is decreasing in 
expectation 49



Bounding the variance

Want to prove 
𝑥$𝐿-𝑦 − 𝑥$𝐿)𝑦 ≤ 𝛿 ⋅ 𝑥$𝑈)𝑥 ⋅ 𝑦$𝑈)𝑦

Suffices
𝑈)
0 71 *(𝐿- − 𝐿))𝑈)

0 71 * ≤ 𝛿
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Bounding the variance

Want to prove 
𝑥$𝐿-𝑦 − 𝑥$𝐿)𝑦 ≤ 𝛿 ⋅ 𝑥$𝑈)𝑥 ⋅ 𝑦$𝑈)𝑦

Suffices

𝑉𝑎𝑟 =
3

𝑃 s 3𝑤3𝑈)
0 71 *𝐿3𝑈)

0 71 *	 ≤
𝛿*

log 𝑛
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Bounding the variance

Want to prove 
𝑥$𝐿-𝑦 − 𝑥$𝐿)𝑦 ≤ 𝛿 ⋅ 𝑥$𝑈)𝑥 ⋅ 𝑦$𝑈)𝑦

Suffices

𝑉𝑎𝑟 =
3

𝑤3𝑠3𝑈)
0 71 *𝐿3𝑈)

0 71 *	 ≤
𝛿*

log 𝑛
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Bounding the variance

Want to prove 
𝑥$𝐿-𝑦 − 𝑥$𝐿)𝑦 ≤ 𝛿 ⋅ 𝑥$𝑈)𝑥 ⋅ 𝑦$𝑈)𝑦

Suffices

𝑉𝑎𝑟 =
3:"→#

𝑠3𝑤3𝑈)
0 71 * 𝜒" − 𝜒# 𝜒"$𝑈)

0 71 *	 ≤
𝛿*

log 𝑛
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Bounding the variance

Want to prove 
𝑥$𝐿-𝑦 − 𝑥$𝐿)𝑦 ≤ 𝛿 ⋅ 𝑥$𝑈)𝑥 ⋅ 𝑦$𝑈)𝑦

Suffices

=
3:"→#

𝑤3*𝑈)
0 71 * 𝜒" − 𝜒# 𝜒"$𝑈)01𝜒" 𝜒" − 𝜒# $𝑈)

0 71 * ≤
𝛿*

log 𝑛
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Bounding the variance

Want to prove 
𝑥$𝐿-𝑦 − 𝑥$𝐿)𝑦 ≤ 𝛿 ⋅ 𝑥$𝑈)𝑥 ⋅ 𝑦$𝑈)𝑦

Suffices

max
3:"→#

𝑤3𝜒"$𝑈)01𝜒" ⋅ =
3:"→#

𝑤3𝑈)
0 71 * 𝜒" − 𝜒# 𝜒" − 𝜒# $𝑈)

0 71 * ≤
𝛿*

log 𝑛
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Bounding the variance

Want to prove 
𝑥$𝐿-𝑦 − 𝑥$𝐿)𝑦 ≤ 𝛿 ⋅ 𝑥$𝑈)𝑥 ⋅ 𝑦$𝑈)𝑦

Suffices

max
3:"→#

𝑤3𝜒"$𝑈)01𝜒" ≤
𝛿*

log 𝑛
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Undirected

max
3:"#

𝑤3 ⋅ 𝜒" − 𝜒# $𝑈)01(𝜒" − 𝜒#)	

max
3
𝑤3 ⋅ 𝑟3

Use small leverage score edges

Directed

max
3:"→#

𝑤3𝜒"$𝑈)01𝜒"

Bounded by max
3
𝑤3 max

",#
𝑟",#

Decompose the graph into small 
effective resistance diameter 
pieces

57



Effective Resistance Decomposition

Goal: Given a graph, find edge-disjoint pieces such that in every piece,

max
3
𝑤3 max

",#
𝑟)(𝑢, 𝑣)

is small, and at least half the edges are contained in the pieces.

58

[Jambulapati-S-Sidford-Tian-Zhao’24]
In 𝑚 log𝑛 time, can find such a decomposition with quality 5

<
log 𝑛



Efficient Eulerian Sparsification

59

[Jambulapati-S-Sidford-Tian-Zhao’24]
In 𝑚 log? 𝑛 time, can construct Eulerian sparsifiers with 𝑛 log* 𝑛 edges 

[Peng-Song’22, Jambulapati-S-Sidford-Tian-Zhao’24]
Can solve directed Laplacian systems in 𝑚 log? 𝑛 + 𝑛 log@ 𝑛 time



Open Questions

Are there Eulerian sparsifiers with 𝑛 log 𝑛 edges? 

With O(𝑛) edges? Known for undirected [Batson-Spielman-Srivastava’08]

Is there an effective resistance decomposition with quality 5
<

?

Yes for undirected [Alev-Anari-Lau-Gharan’18]

60

Thanks!


