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Sparsification



Graph Sparsifiers
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Preserve approximate shortest path distances [Chew’86]



Undirected Cut Sparsifiers
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All vertex cuts have approximately equal weights in G and H
[Benczur-Karger ‘92] There are undirected cut sparsifiers with nlogn edges
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Directed Cut Sparsifiers?
Complete bipartite graph
The only outgoing edgeisa — b

Every edge must be preserved for
a multiplicative cut approximation

No sparsification possible
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Eulerian (Directed) Graphs

Eulerian iff weighted in-degree = weighted out-degree

Avoids pathological issues

Observed advantage for flow problems [Ene-Miller-Pachocki-Sidford’16]



Spectral Characterization



Undirected Laplacians

A weighted, undirected graph G = (V,E,w)
n=|\V], m = |E]|, w:E - R,

Laplacian of edge uv is the symmetric nXn matrix,
u (%
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Undirected Laplacians

A weighted, undirected graph G = (V,E,w)
n=|\V], m = |E]|, w:E - R,

Laplacian of G is

L = z Wyp Loy

(u,v)EE

= z Wy Otu — X0) Qtu — Xw) |

(u,v)EE



Directed Laplacians
A weighted, directed graph G = (V, E,w)
n=|V]|, m=‘§‘, W:E—>]R_|_

Laplacian of edge u — v is the asymmetric nXn matrix,
u (%
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Directed Laplacians

A weighted, directed graph G = (V, E,w)

n=|V]|, m=‘§‘, w:E - R,

Laplacian of G is

L; = 2 Wyp Loy

u—-vek

— z Wuv(Xu_Xv)XuT

u—-vek



Undirected Laplacian

u v

1 - =1\ y
L= ) Wuv<5 - I

(u,v)EE -1 - 1/
Symmetric

x'Lx = E Wi (2, — X)°
(u,v)EE
x = 1 gives cut value

L1=L"1=0

Directed Laplacian

u v
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(mostly) asymmetric

xTLx = z Wi (X, — X)Xy,

U—VEE
x = 1, gives directed cut value

IT1=0



Undirected Spectral Sparsifiers [Spielman-Teng‘04]

Suppose G, H are graphs on the same vertex set.
Say LG ~c LH

Vx |x"Lyx—x"Lex| <e-x"Lgx
Picking x = 1,

wy(E(S,S9)) = (1 £ &)wg(E(S,S9))

Generalizes cut-sparsification



Undirected Spectral Sparsifiers [Spielman-Teng‘04]

Suppose G, H are graphs on the same vertex set.
Say LG ~c LH

Vx |x"Lyx—x"Lex| <e-x"Lgx

[Spielman-Srivastava ‘08]

For every graph G, we can find a re-weighted subgraph H with
O(ne~%logn) edges such that L; =, Ly



Directed Spectral Sparsifiers

Quadratic form can be negative
Multiplicative approximations not meaningful

Define it only for Eulerian graphs

— 1 —
x"Lx = > x" (L + ZT)x

Observation: % (Z + ZT) is the Laplacian of the undirected symmetrized
graph



Directed Eulerian (Spectral) Sparsifiers

[Cohen-Kelner-Peebles-Peng-Rao-Sidford-Vladu’17]
1,2 . . . .
U= E (L + ZT) is the Laplacian of the undirected symmetrized graph

Vx,y ‘xTZHy — xTZGy‘ <€ \/xTUGx -y TUqy
Generalizes undirected spectral sparsification

For an Eulerian graph, L1=LT1=0
Sparsifier of Eulerian directed graph must be Eulerian



Applications
[Cohen-Kelner-Peebles-Peng-Rao-Sidford-Vladu’17]

Fast algorithms for Eulerian sparsification give fast algorithms for:

- Solving directed Laplacian systems ZGx = b (not necc Eulerian)
- Computing stationary distributions of Markov chains

- Computing commute times

- Personalized page rank vectors

- Top eigenvector (Perron—Frobenius vector) for positive matrices
[Ahmadinejad-Jambulapati-Saberi-Sidford’21]
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Approaches to Eulerian
Sparsifiers



How to build Eulerian sparsifiers vl

[Cohen-Kelner-Peebles-Peng-Rao-Sidford-Vladu’17]
Sample edges independently in expanders
Fix degree imbalance by adding extra edges

nlog® n edge sparsifier in mlog® n for large C
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How to build Eulerian sparsifiers v2

Short cycle decompositions [Chu-Gao-Peng-S-Sawlani-Wang’18]

Any unit-weighted graph can be partitioned into edge-disjoint cycles of
length at most 2 log n, with 2n leftover edges.

Toggle cycles independently, keep edges in one direction with double

weight / \

— p=1/2 I p=1/2
o
o



Previous Best Guarantees



Previous Best Guarantees

Approach Sparsity Runtime



Previous Best Guarantees

Approach

Expander decompositions

[Cohen-Kelner-Peebles-Peng-Rao-Sidford-Vladu’l7,
Ahmedinajad-Peebles-Pyne-Sidford-Vadhan 23]

Sparsity

nlog?’n

Runtime

mlog’ n
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Previous Best Guarantees

Approach

Expander decompositions
[Cohen-Kelner-Peebles-Peng-Rao-Sidford-Vladu’l7,
Ahmedinajad-Peebles-Pyne-Sidford-Vadhan‘23]

Short cycle decomposition
[Chu-Gao-Peng-S5-Sawlani-Wang’18,
Liu-S-Yu’19, Parter-Yogev 19, Thudi-S-Zhao‘24]

Sparsity

nlog?’n

nlog3n

Runtime

mlog’ n

1+6
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Previous Best Guarantees

Approach Sparsity Runtime

Expander decompositions nlog?’n mlog’ n
[Cohen-Kelner-Peebles-Peng-Rao-Sidford-Vladu’l7,
Ahmedinajad-Peebles-Pyne-Sidford-Vadhan 23]

Short cycle decomposition nlog3n mlto
[Chu-Gao-Peng-S5-Sawlani-Wang’18,
Liu-S-Yu’19, Parter-Yogev 19, Thudi-S-Zhao‘24]

Electrical flows + effective resistance decomposition nlog*n mlog>n
[Jambulapati-S-Sidford-Tian-Zhao'24]

27



Building Undirected Sparsitiers



Edge Leverage Scores

Undirected graph G,
Define effective resistance of an edge e

Te = (Xu — Xv)TL_l(Xu — Xv)

= Tr(L,L™1)

Define leverage score of e as w, 7,

Observe: Y., w,r, = Tr(L"1Y . w,L,) <n



Constructing Undirected Sparsifiers

Pick edges with leverage score w7, < 2n/m
Toss independent coins for edges

Tails:  Discard the edge, or,
Heads: Keep the edge and double the weight

Repeat for log n iterations



Scalar Azuma’s Inequality

Consider values X; € R s.t

Then, for random s;~ + 1,

2 i Xi| < m/logm

l

with high prob.



Scalar Azuma’s Inequality

Consider values X; € R s.t

Var (2 Sin-) < o°

l
Then, for random s;~ + 1,

2 $;X;| < m/logm

l

with high prob.



Matrix Azuma’s Inequality

[Lust-Piquard & Pisier’91, Tropp ‘11]
Consider matrices X; € R™" s.t

max EXXT , Exfxi

L

Then, for random s;~ + 1

z ;i Xi|| < J\/logm

l

with high prob.

IA



Matrix Azuma’s Inequality

[Lust-Piquard & Pisier’91, Tropp ‘11]
Consider matrices X; € R™" s.t

Var (Z X)

l

IN\
Q
N

Then, for random s;~ + 1,

z ;i Xi|| < J\/logm

l

with high prob.



Constructing Undirected Sparsifiers

Want to prove
—6-x " Lex <x"Lyx—x"Lex <8 -x"Lgx



Constructing Undirected Sparsifiers

Want to prove

L_l/z(L _Ls || <5
G H G) G —




Constructing Undirected Sparsifiers

Want to prove

Suffices

1 1
z Aw,L,. /ZLeLG /2
e

2 _1/2 —1 _1/2
e




Constructing Undirected Sparsifiers

Want to prove

Suffices

-1/ -1/
2W§L “XeXeLg XexeL, '*

_1/2 _1/2
Aw,L, "2L,L, 2| < &
e

~ logn



Constructing Undirected Sparsifiers

Want to prove

Suffices

1 1
z Aw,L,. /ZLeLG /2
e

_1 _1
2 WETL /ZLeLG /2
e




Constructing Undirected Sparsifiers

Want to prove

Suffices

max —fay 1=/
wero - || Y wel 2L,L,
e

_1/2 _1/2
Aw,L, "2L,L, 2| < &
e

~ logn



Constructing Undirected Sparsifiers

Want to prove

_1/2 _1/2
Aw,L, "2L,L, 2| < &
e

Suffices

52
max w,r, <
e €€ logn



Constructing Undirected Sparsifiers

Want to prove

_1/2 _1/2
Aw,L, "2L,L, 2| < &
e

Suffices
2n 67
— <
m  logn




Constructing Undirected Sparsifiers

We obtain graph H such that Ly =5 L; for 6 = \/

Total error on iterating

nlogn

\

m

_I_

nlogn

m

nlogn

N

3m/a

Stop when last term is ¢, for total error O(¢)

Giving final edge count m’ = ne"“logn

QED



Building Eulerian Sparsifiers



Constructing Eulerian Sparsifiers?

Obstacle:
Pick random signing s, ~ +1, Aw, = s,w, need not preserve

Fulerianness

Previous solutions:
Only toggle directed cycles => Expensive to find short cycles
Add extra edges => Challenging to keep error small



Constructing Eulerian Sparsifiers?

Obstacle:
Pick random signing s, ~ +1, Aw, = s,w, need not preserve

Fulerianness

Our solution:

Pick random signing s, ~ +1 and linearly project s to ensure Eulerian-
ness S

[
L4
4

Equivalent to fixing degree balance P(s) ¢

by using electrical flows to route excess



Constructing Eulerian Sparsifiers?

Pick random signing s, ~ +1 and linearly project s to ensure
Eulerianness

Challenge 1: What happens to the variance?

Var (2 SeWeXe)

e

Key Observation:

Var (z P(S)eWeXe)

IN




Constructing Eulerian Sparsifiers?

Pick random signing s, ~ +1 and linearly project s to ensure
Eulerianness

Challenge 2:

max P(s), ~ 1/logm
e

1
Scale down s, = +
J91ogm




Constructing Eulerian Sparsifiers?

1
. . _ . .
Pick random signing s, = + Tiogm and linearly project s to ensure

Eulerianness
Challenge 3: The sparsity is not reducing!

Key Lemma: Repeating this ~logn times leads to {0(m) coordinates
closeto O

Potential argument: show that )., log w, /w, is decreasing in
expectation



Bounding the variance

Want to prove
‘xTLHy — xTLGy‘ <0- \/xTUGx -y TUqy

Suffices

_1/2 I'd __> _1/2 < 6
- 2@, - LU 2| <




Bounding the variance

Want to prove

Suffices

‘xTzHy — xTZGy‘ <0- \/xTUGx -y TUqy

Var (z P(s).w, Ugl/zze Ugl/z )

~ logn



Bounding the variance

Want to prove
‘xTLHy — xTLGy‘ <0- \/xTUGx -y TUqy

Suffices

1/, _1 52
Var (2 WeSeU,. /ZLeUG /2) < og 1
e




Bounding the variance

Want to prove
‘xTLHy — xTLGy‘ <0- \/xTUGx -y TUqy

Suffices

~ logn

-1/ e || <5
Var 2 SeWe U, (Xu_Xv)XuUG =

e:u—-v



Bounding the variance

Want to prove

‘xTzHy — xTZGy‘ <0- \/xTUGx -y TUqy

Suffices

o XU)XL-LI_UGTlXu(Xu o Xv)TU

_1/2
G

~ logn



Bounding the variance

Want to prove

‘xTzHy — xTZGy‘ <0- \/xTUGx -y TUgy

Suffices

max We Xy UG Xu':
e:uU—V

1/z T2
z welU, "“Otu — X)) Xu — X)) ' U

eu-v

~ logn



Bounding the variance

Want to prove
‘xTLHy — xTLGy‘ <0- \/xTUGx -y TUgy

Suffices

52
Jax We Xu LU < log n



Undirected
mdx we - X — Xv)TUC?l(Xu
e:uv
maxw, - 1,
e

Use small leverage score edges

R Xv)

Directed

entliax We Xu UG Xu

Bounded by (mglx We) (max ruv)

u,v

Decompose the graph into small
effective resistance diameter
pleces
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Effective Resistance Decomposition

Goal: Given a graph, find edge-disjoint pieces such that in every piece,

(mglx We) (rg%x e (U, v))

is small, and at least half the edges are contained in the pieces.

[Jambulapati-S-Sidford-Tian-Zhao'24]
In mlogn time, can find such a decomposition with quality%logn



Efficient Eulerian Sparsification

[Jambulapati-S-Sidford-Tian-Zhao'24]
In mlog?> n time, can construct Eulerian sparsifiers with n log? n edges

[Peng-Song’22, Jambulapati-S-Sidford-Tian-Zhao’24]
Can solve directed Laplacian systems in mlog3 n + nlog® n time
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Open Questions

Are there Eulerian sparsifiers with nlogn edges?
With O(n) edges? Known for undirected [Batson-Spielman-Srivastava’08]

Is there an effective resistance decomposition with quality%i?

Yes for undirected [Alev-Anari-Lau-Gharan’18]

Thanks!

60



