Sparsifying Eulerian Graphs

EaGL 2024 Workshop [SODA'25] Arun

Sushant Sachdeva University of Toronto

Joint with

Jambulapati

Aaron Sidford Kevin Tian

Yibin Zhao

Sparsification

Graph Sparsifiers

G

 $\mathsf{H}%$

G H

Preserve approximate shortest path distances [Chew'86]

Undirected Cut Sparsifiers

All vertex cuts have approximately equal weights in G and H [Benczur-Karger '92] There are undirected cut sparsifiers with $n \log n$ edges

Directed Cut Sparsifiers?

Complete bipartite graph

The only outgoing edge is $a \rightarrow b$

Every edge must be preserved for a multiplicative cut approximation

No sparsification possible

Eulerian (Directed) Graphs

Eulerian iff weighted in-degree = weighted out-degree

Avoids pathological issues

Observed advantage for flow problems [Ene-Miller-Pachocki-Sidford'16]

Spectral Characterization

Undirected Laplacians

A weighted, undirected graph $G = (V, E, w)$

$$
n = |V|, \qquad m = |E|, \qquad w: E \to \mathbb{R}_+
$$

Laplacian of edge uv is the symmetric $n \times n$ matrix,

$$
L_{uv} = \begin{pmatrix} 1 & \cdots & -1 \\ \vdots & \ddots & \vdots \\ -1 & \cdots & 1 \end{pmatrix} \begin{matrix} u \\ v \end{matrix}
$$

 $=(\chi_{11}-\chi_{12})(\chi_{11}-\chi_{12})^{\top}$

Undirected Laplacians

A weighted, undirected graph $G = (V, E, w)$

$$
n = |V|, \qquad m = |E|, \qquad w: E \to \mathbb{R}_+
$$

Laplacian of G is

$$
L = \sum_{(u,v)\in E} w_{uv} L_{uv}
$$

=
$$
\sum_{(u,v)\in E} w_{uv} (\chi_u - \chi_v) (\chi_u - \chi_v)
$$

 $(-\chi_{\nu})^{\top}$

Directed Laplacians

A weighted, directed graph $G = (V, \vec{E}, w)$

$$
n = |V|, \qquad m = |\vec{E}|, \qquad w: \vec{E} \to \mathbb{R}_+
$$

Laplacian of edge $u \to v$ is the **asymmetric** $n \times n$ matrix,

$$
\vec{L}_{u\to v} = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ -1 & \cdots & 0 \end{pmatrix} v
$$

$$
= (\chi_u - \chi_v) \chi_u^{\mathsf{T}}
$$

Directed Laplacians

A weighted, directed graph $G = (V, \vec{E}, w)$ $n = |V|, \qquad m = |\vec{E}|, \qquad w: \vec{E} \to \mathbb{R}_+$

Laplacian of \vec{G} is

$$
\vec{L}_G = \sum_{u \to v \in E} w_{uv} L_{u \to v}
$$

$$
= \sum_{u \to v \in E} w_{uv} (\chi_u - \chi_v) \chi_u
$$

 $u{\rightarrow} \nu{\in}\vec{E}$

 $W_{\mathcal{U}\mathcal{V}}$

Undirected Laplacian Directed Laplacian

$$
x^{\top} L x = \sum_{(u,v) \in E} w_{uv} (x_u - x_v)^2 \qquad x^{\top} L x = \sum_{u \to v \in \vec{E}} w_{uv} (x_u - x_v)^2
$$

$$
x = 1_s
$$
 gives cut value $x = 1_s$ gives directed

(mostly) asymmetric

 $\vec{L} = \begin{bmatrix} \end{bmatrix}$

$$
L1 = L^{\top}1 = 0 \qquad \qquad \vec{L}^{\top}1 = 0
$$

 $x_u - x_v x_{tt}$

cut value

Undirected Spectral Sparsifiers [Spielman-Teng'04]

Suppose G , H are graphs on the same vertex set. Say $L_G \approx_{\varepsilon} L_H$ $\forall x \quad |x^{\mathsf{T}}L_{H}x - x^{\mathsf{T}}L_{G}x| \leq \varepsilon \cdot x^{\mathsf{T}}L_{G}x$

Picking $x = 1_s$,

 $w_H(E(S, S^c)) = (1 \pm \varepsilon)w_G(E(S, S^c))$

Generalizes cut-sparsification

Undirected Spectral Sparsifiers [Spielman-Teng'04]

Suppose G , H are graphs on the same vertex set. Say $L_G \approx_{\varepsilon} L_H$ $\forall x \quad |x^{\mathsf{T}}L_{H}x - x^{\mathsf{T}}L_{G}x| \leq \varepsilon \cdot x^{\mathsf{T}}L_{G}x$

[Spielman-Srivastava '08] For every graph G, we can find a re-weighted subgraph H with $O(n \varepsilon^{-2} \log n)$ edges such that $L_G \approx_{\varepsilon} L_H$

Directed Spectral Sparsifiers

Define it only for Eulerian graphs $x^{\mathsf{T}} \vec{L} x =$ 1 $\frac{1}{2} x^{\mathsf{T}} (\vec{L} + \vec{L}^{\mathsf{T}}) x$

Quadratic form can be negative Multiplicative approximations not meaningful

Observation: $\frac{1}{2}(\vec{L} + \vec{L}^T)$ is the Laplacian of the undirected symmetrized graph

Directed Eulerian (Spectral) Sparsifiers

[Cohen-Kelner-Peebles-Peng-Rao-Sidford-Vladu'17]

 $U =$ $\frac{1}{2}(\vec{L}+\vec{L}^{\textsf{T}})$ is the Laplacian of the undirected symmetrized graph

$$
\forall x, y \ \left| x^{\top} \vec{L}_H y - x^{\top} \vec{L}_G y \right| \leq \varepsilon \cdot \sqrt{x^{\top} U_G x \cdot y^{\top} U_G y}
$$

Generalizes undirected spectral sparsification

For an Eulerian graph, $\vec{L}1 = \vec{L}^T1 = 0$ Sparsifier of Eulerian directed graph must be Eulerian 18

Applications

[Cohen-Kelner-Peebles-Peng-Rao-Sidford-Vladu'17]

Fast algorithms for Eulerian sparsification give fast algorithms for:

- Solving directed Laplacian systems $\vec{L}_G x = b$ (not necc Eulerian)
- Computing stationary distributions of Markov chains
- Computing commute times
- Personalized page rank vectors
- Top eigenvector (Perron–Frobenius vector) for positive matrices [Ahmadinejad-Jambulapati-Saberi-Sidford'21]

Approaches to Eulerian Sparsifiers

How to build Eulerian sparsifiers v1

[Cohen-Kelner-Peebles-Peng-Rao-Sidford-Vladu'17]

Sample edges independently in expanders

Fix degree imbalance by adding extra edges

 $n \log^C n$ edge sparsifier in $m \log^C n$ for large C

How to build Eulerian sparsifiers v2

Short cycle decompositions [Chu-Gao-Peng-S-Sawlani-Wang'18]

Any unit-weighted graph can be partitioned into edge-disjoint cycles of length at most $2 \log n$, with $2n$ leftover edges.

Toggle cycles independently, keep edges in one direction with double weight

Approach **Sparsity Sparsity Runtime**

Approach **Sparsity Runtime**

Expander decompositions [Cohen-Kelner-Peebles-Peng-Rao-Sidford-Vladu'17, Ahmedinajad-Peebles-Pyne-Sidford-Vadhan'23]

$n \log^{20} n$ $m \log^7 n$

26

Approach Sparsity Runtime

Expander decompositions [Cohen-Kelner-Peebles-Peng-Rao-Sidford-Vladu'17, Ahmedinajad-Peebles-Pyne-Sidford-Vadhan'23]

Short cycle decomposition [Chu-Gao-Peng-S-Sawlani-Wang'18, Liu-S-Yu'19, Parter-Yogev '19, Thudi-S-Zhao'24]

$n \log^{20} n$ $m \log^7 n$

 $n \log^3 n$ $m^{1+\delta}$

Approach Sparsity Runtime

Expander decompositions [Cohen-Kelner-Peebles-Peng-Rao-Sidford-Vladu'17, Ahmedinajad-Peebles-Pyne-Sidford-Vadhan'23]

Electrical flows + effective resistance decomposition $n \log^2 n$ [Jambulapati-S-Sidford-Tian-Zhao'24]

$n \log^{20} n$ $m \log^7 n$

 $n \log^3 n$ $m^{1+\delta}$

$m \log^3 n$

Short cycle decomposition [Chu-Gao-Peng-S-Sawlani-Wang'18, Liu-S-Yu'19, Parter-Yogev '19, Thudi-S-Zhao'24]

Building Undirected Sparsifiers

Edge Leverage Scores

Undirected graph G, Define effective resistance of an edge e

$$
r_e = (\chi_u - \chi_v)^\top L^{-1} (\chi_u - \chi_v)
$$

$$
= Tr(L_e L^{-1})
$$

Define leverage score of e as $W_e r_e$

Observe:
$$
\sum_{e} w_{e} r_{e} = Tr(L^{-1} \sum_{e} w_{e} L_{e}) \le n
$$

Pick edges with leverage score $w_e r_e \leq 2n/m$

Toss independent coins for edges

Tails: Discard the edge, or,

Heads: Keep the edge and double the weight

Repeat for $\log n$ iterations

Scalar Azuma's Inequality

Consider values $X_i \in R$ s.t \sum $\overline{\mathfrak{l}}$ $X_i^2 \leq \sigma^2$ Then, for random $s_i \sim \pm 1$, \sum $\overline{\mathbf{i}}$ $|S_iX_i|\leq \sigma\sqrt{\log m}$

Scalar Azuma's Inequality

Consider values $X_i \in R$ s.t $Var\left(\begin{array}{c} \searrow \end{array}\right)$ $\overline{\mathfrak{l}}$ $s_i X_i \leq \sigma^2$ Then, for random $s_i \sim \pm 1$, \sum $\overline{\mathfrak{l}}$ $|S_i X_i| \le \sigma \sqrt{\log m}$

Matrix Azuma's Inequality

Matrix Azuma's Inequality

Want to prove

 $-\delta \cdot x^{\mathsf{T}} L_G x \leq x^{\mathsf{T}} L_H x - x^{\mathsf{T}} L_G x \leq \delta \cdot x^{\mathsf{T}} L_G x$

Want to prove

$$
\left\| L_G^{-1/2} (L_H - L_G) L_G^{-1/2} \right\| \le \delta
$$

Want to prove

$$
\left\| \sum_{e} \Delta w_e L_G^{-1/2} L_e L_G^{-1/2} \right\| \le \delta
$$

Suffices

$$
\left\| \sum_{e} w_e^2 L_G^{-1/2} L_e L_G^{-1} L_e L_G^{-1/2} \right\| \le \frac{\delta^2}{\log n}
$$

Want to prove

$$
\left\| \sum_{e} \Delta w_e L_G^{-1/2} L_e L_G^{-1/2} \right\| \le \delta
$$

Suffices

$$
\left\| \sum_{e} w_e^2 L_G^{-1/2} \chi_e \chi_e^\top L_G^{-1} \chi_e \chi_e^\top L_G^{-1/2} \right\| \le \frac{\delta^2}{\log n}
$$

Want to prove

$$
\left\| \sum_{e} \Delta w_e L_G^{-1/2} L_e L_G^{-1/2} \right\| \le \delta
$$

Suffices

$$
\left\| \sum_{e} w_e^2 r_e L_G^{-1/2} L_e L_G^{-1/2} \right\| \le \frac{\delta^2}{\log n}
$$

Want to prove

$$
\left\| \sum_{e} \Delta w_e L_G^{-1/2} L_e L_G^{-1/2} \right\| \le \delta
$$

Suffices

$$
\max_{e} w_e r_e \cdot \left\| \sum_{e} w_e L_G^{-1/2} L_e L_G^{-1/2} \right\| \le \frac{\delta^2}{\log n}
$$

Want to prove

$$
\left\|\sum_{e}\Delta w_eL_G^{-1/2}L_eL_G^{-1/2}\right\|\leq \delta
$$

Suffices

$$
\max_{e} w_e r_e \le \frac{\delta^2}{\log n}
$$

Want to prove

$$
\left\| \sum_{e} \Delta w_e L_G^{-1/2} L_e L_G^{-1/2} \right\| \le \delta
$$

Suffices

$$
\frac{2n}{m} \le \frac{\delta^2}{\log n}
$$

We obtain graph *H* such that
$$
L_H \approx_{\delta} L_G
$$
 for $\delta = \sqrt{\frac{n \log n}{m}}$

Total error on iterating

$$
\sqrt{\frac{n\log n}{m}} + \sqrt{\frac{n\log n}{3m/4}} + \dots
$$

Stop when last term is ε , for total error $O(\varepsilon)$ Giving final edge count $m' = n \varepsilon^{-2} \log n$

Building Eulerian Sparsifiers

Obstacle:

Pick random signing $s_e \sim \pm 1$, $\Delta w_e = s_e w_e$ need not preserve Eulerianness

Previous solutions:

Only toggle directed cycles => Expensive to find short cycles Add extra edges => Challenging to keep error small

Obstacle:

Pick random signing $s_e \sim \pm 1$, $\Delta w_e = s_e w_e$ need not preserve Eulerianness

Pick random signing $s_e \sim \pm 1$ and linearly project s to ensure Eulerianness

Equivalent to fixing degree balance by using electrical flows to route excess $\frac{1}{46}$

Our solution:

s

Pick random signing $s_e \sim \pm 1$ and linearly project s to ensure Eulerianness

Challenge 1: What happens to the variance? **Key Observation:**

$$
\left\|Var\left(\sum_{e} P(s)_{e} w_{e} X_{e}\right)\right\| \le \left\|Var\left(\sum_{e} s_{e} w_{e} X_{e}\right)\right\|
$$

Pick random signing $s_e \sim \pm 1$ and linearly project s to ensure Eulerianness

Challenge 2:

$$
\max_{e} P(s)_{e} \sim \sqrt{\log m}
$$

Scale down
$$
s_e = \pm \frac{1}{\sqrt{\log m}}
$$

Pick random signing $s_e = \pm \frac{1}{\sqrt{25}}$ $\frac{1}{\log m}$ and linearly project s to ensure Eulerianness

Key Lemma: Repeating this \sim log *n* times leads to $\Omega(m)$ coordinates close to 0

Potential argument: show that $\sum_e \log w'_e/w_e$ is decreasing in expectation and the set of the set

Challenge 3: The sparsity is not reducing!

Want to prove

$$
\left| x^\top \vec{L}_H y - x^\top \vec{L}_G y \right| \leq \delta \cdot \sqrt{x^\top U_G x \cdot y^\top U_G y}
$$

Suffices

$$
\left\|U_G^{-1/2}(\vec{L}_H - \vec{L}_G)U_G^{-1/2}\right\| \le \delta
$$

Want to prove

$$
\left| x^\top \vec{L}_H y - x^\top \vec{L}_G y \right| \leq \delta \cdot \sqrt{x^\top U_G x \cdot y^\top U_G y}
$$

Suffices

$$
\left\| Var \left(\sum_{e} P(s)_{e} w_{e} U_{G}^{-1/2} \vec{L}_{e} U_{G}^{-1/2} \right) \right\| \leq \frac{\delta^{2}}{\log n}
$$

Want to prove

$$
\left| x^\top \vec{L}_H y - x^\top \vec{L}_G y \right| \le \delta \cdot \sqrt{x^\top U_G x \cdot y^\top U_G y}
$$

Suffices

$$
\left\| Var \left(\sum_{e} w_e s_e U_G^{-1/2} \vec{L}_e U_G^{-1/2} \right) \right\| \le \frac{\delta^2}{\log n}
$$

Want to prove

$$
\left| x^\top \vec{L}_H y - x^\top \vec{L}_G y \right| \leq \delta \cdot \sqrt{x^\top U_G x \cdot y^\top U_G y}
$$

Suffices
\n
$$
\left\| Var \left(\sum_{e:u \to v} s_e w_e U_G^{-1/2} (\chi_u - \chi_v) \chi_u^\top U_G^{-1/2} \right) \right\| \leq \frac{1}{10}
$$

δ^2 $\log n$

Want to prove

$$
\left| x^\top \vec{L}_H y - x^\top \vec{L}_G y \right| \le \delta \cdot \sqrt{x^\top U_G x \cdot y^\top U_G y}
$$

Suffices
\n
$$
\left\|\sum_{e:u\to v}w_e^2U_G^{-1/2}(\chi_u-\chi_v)\chi_u^\top U_G^{-1}\chi_u(\chi_u-\chi_v)^\top U_G^{-1/2}\right\|
$$

Want to prove

$$
\left| x^\top \vec{L}_H y - x^\top \vec{L}_G y \right| \le \delta \cdot \sqrt{x^\top U_G x \cdot y^\top U_G y}
$$

Suffices $\max_{e:u\to v} w_e \chi_u^\top U_G^{-1}\chi_u \cdot \left\| \sum_{e:u\to v} w_e U_G^{-1/2} (\chi_u - \chi_v) (\chi_u - \chi_v)^\top U_G^{-1/2} \right\| \leq \frac{\delta^2}{\log n}$

Want to prove

$$
\left| x^\top \vec{L}_H y - x^\top \vec{L}_G y \right| \le \delta \cdot \sqrt{x^\top U_G x \cdot y^\top U_G y}
$$

Suffices

$$
\max_{e:u\to v} w_e \chi_u^\top U_G^{-1} \chi_u \le \frac{\delta^2}{\log n}
$$

Undirected

$$
\max_e w_e \cdot r_e
$$

Bounded by (max \boldsymbol{e}

$$
\max_{e:uv} w_e \cdot (\chi_u - \chi_v)^{\top} U_G^{-1} (\chi_u - \chi_v) \qquad \max_{e:u \to v} w_e \chi_u^{\top} U_G^{-1}
$$

Use small leverage score edges

Directed

Decompose the graph into small effective resistance diameter pieces

 $1\chi_u$

 w_e) (max u, v $r_{u,v}$

Effective Resistance Decomposition

Goal: Given a graph, find edge-disjoint pieces such that in every piece,

$$
\left(\max_{e} w_e\right)\left(\max_{u,v} r_G(u,v)\right)
$$

is small, and at least half the edges are contained in the pieces.

58

[Jambulapati-S-Sidford-Tian-Zhao'24]

In m log *n* time, can find such a decomposition with quality $\frac{n}{m}$

 $\frac{n}{m} \log n$

Efficient Eulerian Sparsification

[Jambulapati-S-Sidford-Tian-Zhao'24] In $m \log^3 n$ time, can construct Eulerian sparsifiers with $n \log^2 n$ edges

[Peng-Song'22, Jambulapati-S-Sidford-Tian-Zhao'24] Can solve directed Laplacian systems in m $\log^3 n + n \log^6 n$ time

Open Questions

Are there Eulerian sparsifiers with $n \log n$ edges?

With $O(n)$ edges? Known for undirected [Batson-Spielman-Srivastava'08]

Is there an effective resistance decomposition with quality $\frac{n}{m}$ \overline{m} Yes for undirected [Alev-Anari-Lau-Gharan'18]

?

Thanks!